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Abstract
We study the properties of the localized interface plasmon modes (IPMs)
arising from coupling and splitting of the plasmon eigenstates in two semi-
infinite superlattices containing complex defect structures. Two kinds of defect
structure are considered: one is a single quantum well, i.e., a barrier–well–
barrier structure; the other is a well–barrier–well structure. The influences of
the constitution of the defect structures, as well as the physical and geometric
parameters of the superlattices on the characteristics of the localized IPMs
are investigated in detail. The numerical results show that the localized modes
exhibit peculiar features; the complexity of the dispersion of IPMs is essentially
associated with the coupling of the interwell regions in the defect structure, and
the barrier and well layers play different roles in the features of the localized
IPMs. We also present a comparison of the dispersions of the localized IPMs
between these two types of defect structure and give a physical picture to explain
these results.

1. Introduction

In the past few decades, there has been continuous effort in studying collective excitations of
the two-dimensional layered electron gas (2DLEG) in semiconductor superlattices, especially
following the developments in the techniques of superlattice growth and the fabrication
of microstructures, such as molecular-beam epitaxy and metal–organochemical vapour
deposition. The dispersion relation of the bulk plasmons of the 2DLEG in perfect superlattices
has been intensively analysed theoretically on the basis of both macroscopic and microscopic
methods [1–5]. The plasmon spectrum has also been measured by means of Raman scattering
experiments [2, 6]. For an ideal superlattice consisting of a periodic array of doped quantum
wells, the two-dimensional plasmon excitations of the individual quantum well are coupled
together by the long-range Coulomb force; the bulk plasmon modes have been found to form
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a band structure which strongly depends on the periodicity of the superlattice. However,
when such periodicity is broken, localized states occur, which holds true for electrons [7–11],
acoustic phonons [12–14], and interface optical phonons [15–17] in aperiodic superlattices or
semi-infinite superlattices. In the case of the semi-infinite superlattices, various authors have
explored the properties of the surface plasmon modes at the interface between a semi-infinite
superlattice and an adjoining bulk material when the dielectric constants of the two materials
are different [18, 19]. The occurrence of surface plasmon modes significantly relies on the
ratio of the dielectric constants of the two materials. The localized interface plasmon modes
(IPMs) in a system composed of two semi-infinite semiconductor superlattices separated by
a space of d have also been explored [20]. Two branches consisting of higher-energy and
lower-energy IPMs are found arising from symmetric or antisymmetric linear combinations
of plasmon eigenstates of the prototype perfect superlattices.

The present work is inspired by the above-mentioned research work. We have studied the
localized interface optical phonon modes in the previous research [21, 22]. In this paper, we
extend our foregoing work to studies of the properties of localized IPMs in a system consisting
of a complex defect structure, such as structures containing N quantum wells, each sandwiched
by two semi-infinite semiconductor superlattices. By solving Maxwell’s equations and using
the linear response theory, we derive general formulae suitable for calculating the dispersion
relation of the localized IPMs in the system considered here. We discuss two special structures:
one is the defect structure composed of a single quantum well, i.e., the barrier–well–barrier
(BWB) structure; the other is the well–barrier–well (WBW) defect structure. We numerically
investigate the effects of the coupling between two semi-infinite superlattices, as well as the
coupling between the superlattice and the defect structure, on the plasmon bulk bands and
localized IPMs. We find that the present structures exhibit peculiar and interesting properties
of the localized IPMs: the maximal number of localized IPMs is different for BWB and WBW
defect structures, and the barrier and well layers in defect structures play different roles in the
features of the dispersions of the localized IPMs. The coupling of the plasmon excitations of
the superlattices results in the creation of unique localized IPMs. We also present a comparison
of the dispersion of the localized IPMs between the BWB and WBW defect structures and
give a simple physical picture to explain these results.

This paper is organized as follows. In section 2, we present a brief description of the
model and the necessary formulae used in the calculations. The numerical results together
with an analysis are given in section 3. Finally, we summarize our main findings of this work
in section 4.

2. Model and formulae

We consider a system depicted in figure 1, which is composed of a complex defect structure
sandwiched by two semi-infinite superlattices. The left-hand-side superlattice (labelled
superlattice I) has a period of b, and the uniformly doped electron density is n1. However,
the superlattice on the right-hand side (labelled superlattice III) has a different period of a,
and the doped electron density is n3. The defect structure (defect II) consists of a finite array
of N quantum wells, each of which has a specific period of dl (l = 1, . . . , N) and the doped
electron density is nII,l . The average dielectric constants of superlattice I, superlattice III, and
defect II are ε1, ε3, and ε2, respectively. Besides this, the growth direction of the superlattices
is along the z direction; and every layer in the superlattices or defect structures is located on
the xy plane. The origin of the coordinates is set at the rightmost edge of the left semi-infinite
superlattice I, as seen in figure 1. Here, we assume that the quantum well is so thin that the
2DLEG is formed and arrayed separated by a spacing distance. This model has been widely
adopted in the calculations by many authors [1–5, 18–20, 23].
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Figure 1. A schematic representation of two coupled semi-infinite superlattices separated by a
complicated defect structure. The periods of superlattices I (on the left-hand side) and III (on the
right-hand side) are b and a, respectively. The defect structure standing between them consists of
N quantum wells, each of which has the period of dl (0 � l � N).

In view of the success of Maxwell’s equations coupled to the density response of two-
dimensional electron sheets in treating localized and surface plasmon excitations, in this paper
we adopt them to investigate the localized IPMs. The following boundary conditions must be
satisfied: the tangential component of the electric field is continuous and the normal component
of the displacement vector is discontinuous, by 4πρ, across each interface. Thus, we can derive
the equations for determining the dispersion relation of the localized IPMs. For a p-polarized
electromagnetic wave, from Maxwell’s equations

∇ × H = ∂D
∂ t

= −iωε0εr E (1)

and

(∇ × E)x =
(

−∂B
∂ t

)
x

= iωµ0µr Hx, (2)

we can derive the equation satisfied by Hx :[
∂2

∂y2
+

∂2

∂z2
+

ω2

c2
εrµr

]
Hx = 0. (3)

So the formal solution for Hx is

Hx = (Ae−ikz z + Beikz z)eiky y . (4)

Substituting equation (4) into (1), the components of the electric field Ey and Ez can be easily
calculated. In terms of the Bloch theorem,the periodicity of the superlattice gives rise to Bloch-
type propagation wave solutions. Due to the translation invariance of the system structures
considered here in the xy plane, therefore, only two components of wavevectors are necessary
in the solutions. Consequently, the non-zero components of the electric fields in the three
regions can be written as follows [20, 23, 24]:

Ey =




[E+
1,0e−iβ1(z−z(1)

m ) + E−
1,0eiβ1(z−z(1)

m )]eiq(1)
z (m−1)b, −b � z − z(1)

m � 0 (region I),

[E+
2,le

iβ2(z−z(2)
l ) + E−

2,l e
−iβ2(z−z(2)

l )], 0 � z − z(2)
l � dl (region II),

[E+
3,0eiβ3(z−z(3)

m ) + E−
3,0e−iβ3(z−z(3)

m )]eiq(3)
z (m−1)a, 0 � z − z(3)

m � a (region III),

(5)
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Ez =




qβ−1
1 [E+

1,0e−iβ1(z−z(1)
m ) − E−

1,0eiβ1(z−z(1)
m )]eiq(1)

z (m−1)b,

−b � z − z(1)
m � 0 (region I),

−qβ−1
2 [E+

2,le
iβ2(z−z(2)

l ) − E−
2,l e

−iβ2(z−z(2)
l )],

0 � z − z(2)

l � dl (region II),

−qβ−1
3 [E+

3,0eiβ3(z−z(3)
m ) − E−

3,0e−iβ3(z−z(3)
m )]eiq(3)

z (m−1)a,

0 � z − z(3)
m � a (region III).

(6)

Of course, the harmonic time factor ei(qy−ωt) should be attached to all the above expressions.
Here q = (q, q(n)

z ) stands for the two components of the plasmon wavevectors parallel and
perpendicular to the interface, and βn is related to the parallel component q by the relationship
β2

n = εnω
2/c2 − q2, where n denotes the specific regions I, II, and III. z(2)

l = ∑l
i=1 di and

z(3)
m = ∑N

i=1 di + ma denote the coordinates of the left-hand-side beginning of the lth layer
in defect II and the mth layer in superlattice III, respectively. For a symmetric structure,
z(1)

m = −mb defines the coordinate of the right-hand-side beginning of the mth layer in
superlattice I, where m is taken to be a positive integer.

For the localized IPMs, the Bloch wavenumbers q(1)
z and q(3)

z for superlattices I and III
should take complex values in the forms

q(1)
z = kπ

b
+ iq(1)

0 (q(1)

0 > 0, k = 0, 1, 2, . . .), (7a)

q(3)
z = k ′π

a
+ iq(3)

0 (q(3)

0 > 0, k ′ = 0, 1, 2, . . .). (7b)

With the use of the continuity of the Ey and the discontinuity of the Ez at every interface, the
dispersion equation is determined by

cosh(iq(1)
z b) − cosh(qb) = 1

2r1 sinh(qb), (8a)

cosh(iq(3)
z a) − cosh(qa) = 1

2r3 sinh(qa), (8b)

AII,1[T (2, 1)AII,N + T (2, 2)] − T (1, 1)AII,N − T (1, 2) = 0, (8c)

where r1 and r3 are given respectively by

r1 = −4π(e∗)2n1q

ε1m∗ω2
,

r3 = −4π(e∗)2n3q

ε3m∗ω2
,

where e∗ and m∗ are the charge and effective mass of the electrons in the quantum well. Here,
the interaction of the plasmon modes with the electromagnetic modes is not considered. AII,1

represents the amplitude ratio E+
2,1/E−

2,1 of the first layer in defect region II, AII,N being the
amplitude ratio E+

2,N /E−
2,N of the N th layer in defect region II. Their particular expressions

are

AII,1 =
ε2
ε1

sinh(qb) − [e−iq(1)
z b − cosh(qb)]

ε2
ε1

sinh(qb) + [e−iq(1)
z b − cosh(qb)]

and

AII,N =
ε2
ε3

sinh(qa) + [e−iq(3)
z a − cosh(qa)]

ε2
ε3

sinh(qa) − [e−iq(3)
z a − cosh(qa)]

e2qdN .
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The matrix T describes the propagation of the amplitude factor from the first to the N th
quantum well in defect region II, and it is given by

T =
N−1∏
l=1

P−1(q, dl)Q(rII,l), (9)

where

P(q, z) =
(

e−qz eqz

e−qz −eqz

)
,

and

Q(r) =
(

1 1
r + 1 r − 1

)
.

rII,l has an analogous form to r1 (or r3) except for the replacement of ε1 and n1 respectively by
ε2 and nII,l .

Note that equations (8a) and (8b) together describe the dispersion relation of the bulk
plasmons for perfect and infinite superlattices I and III when q(1)

z and q(3)
z are real numbers.

The plasmon occurs only for the condition |cosh(iq(1)
z b)| � 1 or |cosh(iq(3)

z a)| � 1, which
gives the bulk plasmon band. For the localized IPMs, the parallel wavevector should be
complex. Generally speaking, the localized IPMs in the infinite superlattices with any defect
structures are determined by equations (8a)–(8c).

3. Results and discussion

3.1. BWB defect structure

We now consider a case where the defect structure is composed of a single quantum well, i.e.,
a barrier–well–barrier (BWB) structure. The widths of the left and right barriers are d1 and d2,
respectively; the electron density in the well layer is nII,1. Equation (8c) can then be simplified
to

AII,1e−qd1

[
1 − rII,1

2
(1 + AII,2)

]
− eqd1

[
AII,2 +

rII,1

2
(1 + AII,2)

]
= 0. (10)

The dispersion relations of the localized plasmon modes are numerically determined by
equation (10) and equations (8a), (8b). In the following calculations, all the frequencies
are measured in units of the eigenfrequency ω0 associated with superlattice III, which is given
by

ω0 =
[

4π(n3/a)(e∗)2

m∗ε3

]1/2

. (11)

The electron density and the period involved are scaled by their relative values with respect to
those in superlattice III. We also assume that the dielectric constants of the materials in regions
I, II, and III are identical, i.e., ε1 = ε2 = ε3.

We illustrate the frequency spectrum of the localized IPMs as a function of the transverse
wavenumber q in figure 2. Here, superlattices I and III possess the same period a = b and
the same doped electron density n1 = n3. The electron density nII,1 in the quantum well
is chosen as nII,1/n3 = 0.5. The widths of the right and left barriers of the quantum well
in the defect structure are kept identical, as 0.1a, 0.35a, 0.5a, and 0.7a, and the spectra of
the localized IPMs correspond to figures 2(a)–(d), respectively. The shaded areas confined
by two dash–dotted curves with cosh iq(1)

z b = −1 and 1 indicate the bulk plasmon bands,
which correspond to the continuum of the bulk plasmons for the isolated superlattices. It
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Figure 2. The dispersion spectrum of the localized IPMs as a function of the transverse wavenumber
q in the two semi-infinite superlattices separated by a BWB defect structure. Here, we set a = b,
n1 = n3, and nII,1/n3 = 0.5. The right and left barrier widths are kept identical, as 0.1a, 0.35a,
0.5a, and 0.7a, and their localized IPMs correspond to (a)–(d), respectively. The shaded areas
between two dash–dotted curves with cosh iq(1)

z b = −1 and cosh iq(1)
z b = 1 represent the bulk

plasmon bands for the isolated superlattices I and III. The solid curves lying outside the bands are
the localized IPMs.

should be emphasized that the bulk plasmon band is determined only by the periodic structure
of the superlattices and the transverse wavenumber q , independently of the defect structure,
as stated above from equations (8a) and (8b). Since superlattices I and III are completely
identical, their bulk plasmon bulks overlap with each other. With the increase of the transverse
wavevector q , the upper and lower band edges of the bulk plasmon modes approach closer
and finally become degenerate at the boundary of the first Brillouin zone of the superlattices.
It is clearly seen in figure 2(a) that three localized IPMs appear outside the bulk plasmon
band: one is a higher-energy mode (marked as mode ω3) lying above the bulk plasmon band;
the others are two lower-energy modes (marked as mode ω1 and ω2) lying below the bulk
plasmon band. Besides these two conventional modes ω1 and ω3 corresponding to symmetric
or antisymmetric combinations of plasmon eigenstates of the individual superlattices I and III,
as discussed in [20], a new localized IPM ω2 is created. We also find that mode ω2 is much
more sensitive to the variation of the parameters of the defect region. In the long-wavelength
limit, the frequency of the modes ω1 and ω2 approaches zero when q → 0, while the frequency
of the mode ω3 approaches 1. On increasing q , the frequencies of three modes are increased.
An interesting thing is that on increasing the width of d1 and d2 from 0.1a to 0.35a, the mode
ω3 shifts rapidly downward and approaches the upper band edge of the continuum of the bulk
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Figure 3. Distributions of the electric field for the localized IPMs calculated in figure 2(a). Parts (a)
((b), (c)) and (d) ((e), (f)) correspond to the tangential component Ey and the normal component
Ez of the electric field, respectively, for the mode ω3 (ω2, ω1) with the frequency 1.90 (1.41, 0.55)
in units of ω0. ω0 is the eigenfrequency associated with superlattice III.

plasmons; however, ω2 is rapidly shifted upward and approaches the lower band edge of the
continuum of the bulk plasmons, as seen in figures 2(a) and (b). Further increasing the width
of d1 and d2 to 0.5a, the mode ω2 is merged into the continuum of the bulk plasmons; only
two modes ω1 and ω3 survive, as seen in figure 2(c). When the widths d1 and d2 are equal to
0.7a, the mode ω3 is also merged into the continuum of the bulk plasmons and only one mode
ω1 is found, as shown in figure 2(d). The mode ω1 exhibits a weak dependence on the change
of the widths d1 and d2 in the case of d1 = d2. The more sensitive dependence of the mode
ω2 on the widths d1 and d2 when they are identical reveals the fact that this new localized IPM
originates from the coupling of the defect structure and the superlattices; this coupling in turn
leads to the splitting of the plasmon states and the creation of a new localized IPM.

To further reveal nature of the localized IPMs, we map out the distribution of the electric
fields of the localized IPMs displayed in figure 2(a). Figures 3(a) ((b), (c)) and 3(d) ((e),
(f)) correspond to the tangential component Ey and the normal component Ez of the electric
fields for the mode ω3 (ω2, ω1) calculated in figure 2(a), with the frequency ω3 = 1.90ω0

(ω2 = 1.41ω0, ω1 = 0.55ω0). It is evident from figure 3 that the field distribution exhibits a
certain symmetry or antisymmetry with respect to the central plane of the defect structures,
and the symmetry of Ey is always inverse to that of Ez for these three modes. The symmetry
of Ey (or Ez) of the mode ω2 is opposite to that of the modes ω1 and ω3. Moreover, these
modes are highly localized in the vicinity of the defect region, and they rapidly decay to zero,
as demonstrated in figure 3. The continuity of Ey and the discontinuity of Ez at the interfaces
are also obviously observed on comparing figures 3(a) ((b), (c)) with figures 3(d) ((e), (f)).

We now discuss the influence of the different widths (d1 �= d2) of the constituent layers
of the defect structure on the localized IPMs—different from that for the above sample with
d1 = d2. We fixed the width d1 of the left barrier of the quantum well to 0.1a, but the width
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Figure 4. The influence of the width of the constituent layers of the defect structure on the localized
IPMs in the same structure as in figure 2. We assume the width of the left barrier d1 of the quantum
well to be 0.1a, but the width of the right barrier d2 changes from 0.01a, 0.1a, 0.3a, to 0.4a. The
corresponding numerical results are shown in (a)–(d). Other parameters are chosen as n1/n3 = 2,
nII,1/n3 = 2, and a = b. The explanation of the curve styles is the same as for figure 2.

d2 of the right barrier d2 is changed from 0.01a to 0.1a, 0.3a, and 0.4a. The corresponding
numerical results are shown in figures 4(a)–(d), respectively. Other parameters are chosen as
n1/n3 = 2, nII,1/n3 = 2, and a = b. It is clearly seen that there are two bulk plasmon bands:
the upper one labelled as 1 corresponds to the continuum of the bulk plasmons in superlattice
I; the lower one labelled as 3 corresponds to the continuum of the bulk plasmon modes in
superlattice III. Compared with figure 2, the bulk plasmon bands 1 and 3 are separated from
each other when qa > 1.80 due to the different electron densities in superlattices I and III. The
mode ω3 occurs only when the parallel wavenumber q is larger than a certain value depending
on the ratio n1/n3. However, the modes ω1 and ω2 span the whole Brillouin zone, regardless
of the electron density ratio n1/n3. In the long-wavelength limit, both ω1 and ω2 approach
zero when qa → 0; in contrast, ω3 approaches a finite frequency and it appears only when qa
is larger than a certain value. With the increase of d2, mode ω2 rapidly approaches the lower
band edge of continuum 3 of the bulk plasmons and, when d2 > 0.4a, the mode ω2 is merged
into continuum 3 and disappears completely, as seen in figure 4(d). By contrast, both modes
ω1 and ω3 exhibit weak dependence on d2. We conclude that the nature of mode ω2 is entirely
different to that of modes ω1 and ω3. The mode ω2 stems from the effect of coupling among
the superlattices and the defect structures.

We consider a special structure which is developed from the minor modification of the
above-addressed sample in figure 4; we set d1 = a and all the other parameters remain
unchanged from those of figure 4. In this case, the system can be regarded as two semi-infinite
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Figure 5. As figure 4 except for a change of the width d1, i.e., d1 = a. Parts (a)–(d) correspond to
different widths d2: 0.01a, 0.1a, 0.3a, and 0.5a, respectively. The explanation of the curve styles
is the same as for figure 2.

superlattices separated by a distance d2, just as discussed in [20]. The results are depicted in
figures 5(a)–(d) for different d2: (a) d2 = 0.01a, (b) 0.1a, (c) 0.3a, and (d) 0.5a. It is clearly
seen that only two trivial IPMs ω1 and ω3 appear. This manifests that a single isolating layer
only leads to symmetric or antisymmetric coupling between superlattices I and III. The mode
ω2 never occurs in the present sample. This hints that the origin of the mode ω2 strongly relies
on the coupling among the superlattices and the complex defect structure. On increasing d2,
mode ω1 (mode ω3) is rapidly shifted upward (downward) to frequency continuum 1 (3) of
the bulk plasmons; finally both modes ω1 and ω3 are merged into the continua of the bulk
plasmons, as seen in figure 5(d) when d2 is greater than 0.5a.

The dependence of the number of localized IPMs on the number N of barriers in the defect
region is displayed in figures 6(a)–(d) for different N : (a) N = 3, (b) 4, (c) 5, and (d) 6. Here,
we choose the same doped electron density n1 = n3 = nII,i . The period of superlattice III is
identical to that of superlattice I, and the width of each layer of the defect structures is 0.1a.
Besides the existence of the trivial modes ω1 (lower-energy mode) and ω3 (higher-energy
mode), there are other nontrivial IPMs, which are labelled as ω2a, ω2b, ω2c, . . . , ωs, etc. The
number of nontrivial IPMs increases with N ; for instance, it is 1 (see figure 2(a)), 2, 3, 4, and
5 for the numbers of barriers N = 2 (see figure 2(a)), 3, 4, 5, and 6, as seen in figures 6(a)–(d).
With the increase of the number N of the barriers, the nontrivial mode ωs with the highest
frequency rapidly approaches the continuum of the bulk plasmons from below this continuum,
merges into the continuum, then crosses the continuum and reappears above the continuum
with a finite spanning wavenumber range, as seen in figures 6(c) and (d). The nature of this
mode ωs seems to develop from an acoustic-like mode to an optical-like mode, according to
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Figure 6. The dependence of the number of localized IPMs on the variation of the defect structures.
Parts (a)–(d) correspond to the cases where the number N of barrier layers in the defect structures
takes the values 3, 4, 5, and 6, respectively. Here, the electron densities in the superlattices I, III
and the defect structure II are identical. Other parameters are chosen as a = b, and the width of
each layer of the defect structures as 0.1a.

its behaviour in the long-wavelength limit. We conclude that the increase of the number of
nontrivial IPMs originates from the coupling of the multiple wells in the defect region.

3.2. WBW defect structure

We now turn to studying a defect structure consisting of a well layer (with an electron density
nII,1) followed by a barrier (with a width d) and a well layer (with an electron density of nII,2),
in sequence. For convenience, we refer to this as a WBW structure. For matching with the
defect structure, we rearrange the sequence of the barrier and well layers in superlattices I
and III. The relevant sequence is reversed to the case containing the BWB defect structure.
This change of the sequence does not have any influence on the theoretical results for the
bulk plasmon modes. That is to say, equations (8a) and (8b) are still suitable for the current
calculations. Equation (8c) now is replaced by the following relation:

(B sinh qd + cosh qd)(C sinh qd + cosh qd) = 1. (12)

B and C are defined, respectively, as

B = e−iq(I)
z b sinh qb

rII,1e−iq(1)
z b sinh qb − ε1

ε2
(1 − e−iq(1)

z b cosh qb)
,

C = e−iq(3)
z a sinh qa

rII,2e−iq(3)
z a sinh qa − ε3

ε2
(1 − e−iq(3)

z a cosh qa)
,
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Figure 7. The dispersion spectrum of the localized IPMs as a function of the parallel wavenumber
qa for different electron densities in the WBW defect structure. We set n1/n3 = 2, a = b, and
d = 0.1a. The electron densities nII,1 and nII,2 are identical; their values relative to those of
superlattice III are chosen as 0.5, 0.8, 1.2, and 1.5, respectively, corresponding to parts (a)–(d).

where d is the width of the barrier. rII,1 and rII,2 are respectively associated with the electron
densities nII,1 and nII,2 in the defect structure.

The frequency spectrum of the localized IPMs as a function of the parallel wavenumber
qa is shown in figure 7 for different electron densities nII,1: (a) nII,1/n3 = 0.5, (b) 0.8, (c) 1.2,
and (d) 1.5, respectively. We set n1/n3 = 2.0, a = b, nII,1 = nII,2, and d = 0.1a. The energy
continuum bands 1 and 3 are associated with superlattices I and III, respectively. It is observed
from figure 7 that there are only two localized IPMs, labelled as ω1 and ω3, in contrast to the
case of figure 2. The mode ω1 belongs to the trivial acoustic-like mode with zero frequency
when qa → 0; however, the mode ω2 seems to be an optical-like mode with a finite spanning
region of the wavenumbers. On increasing nII,1/n3, the mode ω1 is gradually shifted upward
in frequency, while the mode ω3 rapidly approaches the lower band edge of continuum 3 and
merges into it; across this continuum, this mode reappears between continua 3 and 1; finally,
this mode crosses continuum 1 and reappears above continuum 1, as seen in figures 7(a)–(d).
Comparing with figures 2, we can conclude that the barrier and the well layers in the defect
structures play different roles in the features of the localized IPMs.

4. Summary

We have investigated the properties of the localized IPMs in two coupled semi-infinite
superlattices caused by complex structural defects consisting of N quantum wells, in detail.
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Two types of defect structure are considered: one is a BWB structure; the other is a WBW
structure. The numerical results reveal some interesting and novel characteristics of these
defect structures. The main findings can be summarized as follows. For the above two cases,
the maximal numbers of localized plasmon modes are substantially different. For the BWB
structure, three modes are generally produced, in contrast with the existence of only two
localized IPMs in the WBW case. This result is associated with the increased splitting of
the plasmon modes in the BWB defect structure. Here, the barrier and well layers in the
defect structures play different roles in the dispersion behaviour of the localized IPMs. The
introduction of each new barrier layer creates an extra localized IPM. So, the more barrier
layers the defect structure contains, the greater the number of localized plasmon modes. It
is also observed that the actual constitution of the defect structure, the geometric parameters
of the constituent layers, and the relative electron density have a substantial influence on the
existence, splitting, degeneracy, and evolution of the localized IPMs. It is anticipated that
one can artificially engineer the nature of the defect structures, the electron density in the
superlattices and in the defect structures, the energy continuum bands, and the localized IPMs
to match practical requirements.
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